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Résumé

Notre but est d’analyser une approche pour définir et découvrir des mappings probabi-
listes entre deux taxonomies. D’abord, nous comparons 2 façons de modéliser les mappings
probabilistes qui sont compatibles avec les contraintes logiques déclarées dans les taxono-
mies. Nous suivons une démarche bayésienne pour estimer les probabilités des mappings,
en exploitant les descriptions des instances associées aux classes des taxonomies. Ensuite,
nous présentons un algorithme de type generate and test qui détermine les mappings dont
la probabilité dépasse un seuil donné, en minimisant le nombre d’estimations de probabi-
lités. Enfin, nous montrons les résultats d’une expérimentation poussée de notre approche
sur des données synthétisées et contrôlées avec lesquelles nous avons effectué des mesures
à la fois qualitatives et quantitatives.

Mots clefs : taxonomie, ontologie, alignement, mapping, logique, probabilités

1 Introduction

The decentralized nature of the development of Web data management systems makes in-
evitable the independent construction of a large amount of personalized taxonomies used for
annotating data and resources at Web scale. Taxonomies are hierarchical structures appropriate
to data categorization and semantic annotation of resources. They play a prominent role in the
Semantic Web since they are central components of OWL [8] or RDF(S) [23] ontologies. A
taxonomy constrains the vocabulary used to express metadata or semantic annotations to be
classes that are related by structural relationships. Taxonomies are easy to create and unders-
tand by humans while being machine interpretable and processable thanks to a formal logical
semantics supporting reasoning capabilities.

In this setting, establishing semantic mappings between taxonomies is the key to enable
collaborative exchange of semantic data. Manually finding such mappings is clearly not possible
at the Web scale. Therefore, the automatic discovery of semantic mappings is the bottleneck
for scalability purposes.

Many techniques and prototypes have been developed to suggest candidate mappings bet-
ween several knowledge representations including taxonomies, ontologies or schemas (see [31, 32]

1



for surveys). Most of the proposed approaches rely on evaluating the degree of similarity bet-
ween the elements (e.g., classes, properties, instances) of one ontology and the elements of
another ontology. Many different similarity measures are proposed and often combined. Most
of them are based on several syntactic, linguistic or structural criteria to measure the proximity
of the terms used to denote the classes and/or their properties within the ontology. Some of
them exploit characteristics of the data declared as instances of the classes (e.g. [12]).

Almost all the existing matching systems return for every candidate pair of elements a co-
efficient in the range [0,1] which denotes the strength of the semantic correspondence between
those two elements ([18, 27, 5]). Those coefficients are the basis for yearly international compa-
rative evaluation campaigns [16]. Those approaches usually consider each candidate mapping
in isolation. In particular, they do not take into account possible logical implications between
mappings, which can be inferred from the logical inclusion axioms declared between classes
within each ontology. This raises a crucial issue : the similarity coefficients returned by the
existing ontology or schema matching systems cannot be interpreted as probabilities of the as-
sociated mappings. On the other hand, some approaches for detecting semantic mappings by
logical reasoning have been proposed (e.g., [21]). By construction, such logical methods are
limited to discover mappings that are certain.

We claim that uncertainty is intrinsic to mapping discovery. It is first due to the methods
employed for detecting them. Another important reason is that the mappings are usually in-
terpreted as simple semantic relations such as subsomption or equivalence relations between
classes, which is often an oversimplification of the complex overlapping relation existing in the
reality between two classes of different and independenty developed ontologies.

In this paper, we propose an approach to discover automatically probabilistic mappings
between taxonomies of classes.

First, we investigate and compare two ways of modeling probabilistic mappings which are
compatible with the logical constraints declared in each taxonomy. In those two probabilistic
models, the probability of a mapping relies on the joint probability distribution of the involved
classes. They differ on the property of monotonicity of the corresponding probability function
with respect to the logical implication.

For estimating the mappings probabilities, we follow a Bayesian approach to statistics by
exploiting the description of the instances categorized in each taxonomy as observations for the
involved classes. The point is that to estimate the joint probability distribution of two classes
C1 and C2 of different taxonomies, we have to determine among the instances that are declared
in C1 the ones that can be classified in C2 (based on their description), and similarly for the
classification in C2 of instances that are declared in C1. Different classifiers can be used for that
purpose.

Based on the above probabilistic setting, we have designed, implemented and experimented
a generate and test algorithm for discovering the mappings whose probability is greater than a
given threshold. In this algorithm, the monotonicity of the probability function is exploited for
avoiding the probability estimation of as many mappings as possible.

We have performed thorough experiments on controlled synthetic data to measure the per-
formances of such a systematic approach in fonction of the number of possible mappings and
the number of instances per classes. We have also performed qualitative experiments to measure
the impact of the classifiers used to estimate the probabilities on the precision and recall of the
mappings returned by our algorithm.

The paper is organized as follows. Section 2 presents the formal background and states the
problem considered in this paper. Section 3 is dedicated to the definition and computation of
mapping probabilities. In Section 4, we present the algorithm that we propose for discovering
mappings with high probabilities (i.e., greater than a threshold). Section 5 surveys the quanti-
tative and qualitative experiments that we have done on synthetic controlled data. Finally, in
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(a) Taxonomy T1

(b) Taxonomy T2

Fig. 1 – 2 Taxonomies and associated instances

Section 6, we compare our approach to existing works and we conclude.

2 Formal background

We first define taxonomies as a graphical notation and its interpretation in the standard
first-order logical semantics, on which the inheritance of instances is grounded. Then, we define
mappings between taxonomies as inclusion statements between classes of two different taxono-
mies. Finally, we set the problem statement of matching taxonomies that we consider in this
paper.

2.1 Taxonomies : classes and instances

Given a vocabulary V denoting a set of classes, a taxonomy TV is a Directed Acyclic Graph
(DAG) where each node is labelled with a distinct class name of V, and each arc between a
node labelled with C and a node labelled by D represents a specialization relation between the
classes C and D.

Each class in a taxonomy can be associated with a set of instances which have an identifier
and a content description modeled with an attribute-value language.

By a slight abuse of notation, we will speak of the instance i to refer to the instance identified
by i.

Figure 1 shows two samples of taxonomies related to the Music domain. Bold arrows are used
for representing specialization relations between classes, and dashed arrows for membership
relation between instances and classes. In both taxonomies, some instances, with attribute-
value description denoted between brackets, are associated to classes. For example, #102 is an
instance identifier and [Wagner, Tristan und Isold, ...] its associated description.
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The instances that are in the scope of our data model can be varied : they can be web pages
(whose content description is a set of words) identified by their URL, RDF resources (whose
content description is a set of RDF triples) identified by a URI, or audio or video files identified
by a signature and whose content description may be attribute-value metadata that can be
extracted from those files.

We consider only boolean attribute-value description. Such a description could be obtained
by discretization of attribute-value pairs given in a more complex language, like in Figure 1
where textual values are used. We consider that, possibly after a preprocessing which is out
of the scope of this paper, the instances are described in function of a fixed set of boolean
attributes {At1, . . . , Atm}. Then, for an instance i, its description, denoted descr(i), is a vector
[a1, . . . , am] of size m such that for every j ∈ [1..m], aj = 1 if the attribute Atj belongs to the
content description of i, and aj = 0 otherwise.

Taxonomies have a logical semantics which provides the basis to define formally the exten-
sion of a class as the set of instances that are declared or can be inferred for that class.

2.2 Logical semantics

There are several graphical or textual notations for expressing the specialization relation
between a class C and a class D in a taxonomy. For example, in RDF(S) [23] which is the first
standard of the W3C concerning the Semantic Web, it is denoted by (C rdfs :subclassOf D).
It corresponds to the inclusion statement C ⊑ D in the description logics notation.

Similarly, a membership statement denoted by an isa arc from an instance i to a class C
corresponds in the RDF(S) notation to (i rdf :type C), and to C(i) in the usual notation of
description logics.

All those notations have a standard model-theoretic logical semantics based on interpreting
classes as sets : an interpretation I consists of a non empty domain of interpretation ∆I and a
function .I that interprets each class as a non empty subset of ∆I , and each instance identifier
as an element of ∆I . The classes declared in a taxonomy are interpreted as non empty subsets
because they are object containers. According to the unique name assumption, two distinct
identifiers a and b have a distinct interpretation (aI 6= bI) in any interpretation I.
I is a model of a taxonomy T if :
- for every inclusion statement E ⊑ F of T : EI ⊆ F I ,
- for every membership statement C(a) of T : aI ∈ CI .

An inclusion G ⊑ H is inferred by a taxonomy T (denoted by T |= G ⊑ H) iff in every model
I of T , GI ⊆ HI .

A membership C(e) is inferred by T (denoted by T |= C(e)) iff in every model I of T ,
eI ∈ CI .

Let D be the set of the instances associated to a taxonomy T . The extension of a class
C in T , denoted by Ext(C, T ), is the set of instances for which it can be inferred from the
membership and inclusion statements declared in the taxonomy that they are instances of C :

Ext(C, T ) = {d ∈ D/ T |= C(d)}

2.3 Mappings

The mappings that we consider are inclusion statements involving classes of two different
taxonomies T1 and T2. To avoid ambiguity and without loss of generality, we consider that each
taxonomy has its own vocabulary : by convention we index the names of the classes by the
index of the ontology to which they belong. For instance, when involved in a mapping, the class
XXth Opera of the taxonomy T2 of Figure 1 will be denoted by XXth Opera2 while the class
XXth V ocal of the taxonomy T1 will be denoted by XXth V ocal1.
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Fig. 2 – 2 mappings between T1 and T2

Mappings between T1 and T2 are of the form A1 ⊑ B2 or A2 ⊑ B1 where A1 and B1 denote
classes of T1 and A2 and B2 denote classes of T2.

For a mapping m of the form Ai ⊑ Bj , its left-hand side Ai will be denoted lhs(m) and its
right-hand side will be denoted rhs(m).

A mapping Ai ⊑ Bj has the same meaning as a specialization relation between the classes
Ai and Bj , and thus is interpreted in logic in the same way, as a set inclusion. The logical
entailment between classes extends to logical entailment between mappings as follows.

Definition 1 (Entailment between mappings) Let Ti and Tj be two taxonomies. Let m
and m′ be two mappings between Ti and Tj : m entails m′ (denoted m � m′) iff every model of
Ti , Tj and m is also a model of m′.

It is straightforward to show that � is a (partial) order relation on the set M(Ti, Tj) of
mappings between the two taxonomies Ti and Tj . If m � m′, we will say that m is more specific
than m′ (also that m entails m′) and that m′ is more general than m (also that m′ is an
implicate of m).

The following proposition characterizes the logical entailment between mappings in function
of the logical entailment between the classes of their left hand sides and right hand sides.

Proposition 1 Let m and m′ be two mappings between two taxonomies. Let Ti be the taxonomy
of lhs(m), and Tj the taxonomy of rhs(m).

m � m′ iff
- lhs(m) and lhs(m′) are classes of the same taxonomy Ti

and
- Ti |= lhs(m′) ⊑ lhs(m) and Tj |= rhs(m) ⊑ rhs(m′)

For example, two mappings between taxonomies T1 and T2 of Figure 1 are illustrated in
Figure 2 :

– the mapping XXth Opera2 ⊑ XXth V ocal1 is more specific than the mapping
XXth Opera2 ⊑ XXth Century1,

– and the mapping
RecentClassical2 ⊑ XXth Instrumental1 is more specific than the mapping Ravel2 ⊑
Classical Music1.

5



2.4 Problem statement

Among all possible mappings between two taxonomies, we want to determine those that
are the most probable given the descriptions of the instances associated to each class of the
taxonomies. More precisely, the main problem addressed in this paper is the design of an
efficient generate and test algorithm which minimizes the number of calls to the probability
estimator for determining those mappings whose probability exceeds a certain threshold. The
mappings returned by this algorithm will be said probabilistically valid (valid for short).

Two subproblems are emphasized. The first subproblem to handle is the choice of an ap-
propriate probabilistic model for defining the probability of a mapping. As mentioned in the
introduction, a probabilistic semantics of mappings cannot be independent of the logical se-
mantics. In particular, it is expected that a mapping logically entailed by a mapping with a high
probability (i.e., whose probability exceed a threshold) will also get a high probability. The se-
cond subproblem is then to find a good probability estimator to compute mapping probabilities,
given two taxonomies and the description of their instances.

3 Mapping probabilities : models and estimation

3.1 Modeling probabilistic mappings

We have considered two relevant probabilistic models for modeling uncertain mappings.
They are both based on the discrete probability measure defined on subsets of the sample set
representing the set of all possible instances of the two taxonomies. From now on, we will denote
Pr(E) the probability for an instance to be an element of the subset E.

The first model defines the probability of a mapping Ai ⊑ Bj as the conditional probability
for an instance to be an instance of Bj knowing that it is an instance of Ai. It is the natural
way to extend the logical semantics of entailment to probabilities.

The second model comes directly from viewing classes as subsets of the sample space : the
probability of Ai ⊑ Bj is the probability for an element to belong to the set Ai ∪Bj , where Ai

denotes the complement set of Ai in the sample set.
These two models are described in the following definition.

Definition 2 (Two probabilities for a mapping) Let m be a mapping of the form Ai ⊑
Bj.

– Its conditional probability, denoted Pc(m), is defined as : Pc(m) = Pr(Bj|Ai).
– Its union of set probability, denoted Pu(m), is defined as : Pu(m) = Pr(Ai ∪Bj).

The following proposition states the main (comparative) properties of those two probabilistic
models. In particular, they both meet the logical semantics for mappings that are certain, and
they can both be equivalently expressed using joint probabilities.

Proposition 2 Let m be a mapping between two taxonomies Ti and Tj. The following properties
hold :

1. Pu(m) ≥ Pc(m).

2. If m is a certain mapping (i.e., Ti Tj |= m) :

Pc(m) = Pu(m) = 1.

3. Pu(m) = 1 + Pr(lhs(m) ∩ rhs(m))− Pr(lhs(m))

4. Pc(m) =
Pr(lhs(m)∩rhs(m))

Pr(lhs(m))
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They differ on the monotonicity property w.r.t the (partial) order � corresponding to logical
implication (cf. Definition 1) : Pu verifies a property of monotonicity whereas Pc verifies a
property of weak monotonicity as stated in the following theorem.

Theorem 1 (Property of monotonicity) Let m and m′ two mappings.

1. If m � m′ then Pu(m) ≤ Pu(m
′)

2. If m � m′ and lhs(m) = lhs(m′) then Pc(m) ≤ Pc(m
′)

The proof [34] results from Proposition 1 and Proposition 2 which relate mappings with
the classes of their left hand sides and right hand sides for logical entailment and probabilities
respectively, and from considering (declared or inherited) class inclusions within each taxonomy
as statements whose probability is equal to 1.

3.2 Bayesian estimation of mappings probabilities

As shown in Proposition 2, the computation of Pu(m) and Pc(m) relies on computing the
set probability Pr(lhs(m)) and the joint set probability Pr(lhs(m) ∩ rhs(m)). Those values
are unknown and must be estimated. They are the (unknown) parameters of the underlying
Bernoulli distributions modeling the membership function to a set as a random variable taking
only two possible values 0 or 1. Following the Bayesian approach to statistics [9], we model those
(unknown) parameters as continuous random variables, and we use observations to infer their
posterior distribution from their prior distribution. In the absence of any particular knowledge,
the prior distribution is usually set to the uniform distribution. In probability theory, a natural
way of estimating the value of a parameter modeled by a random variable is to take its expected
value. All this is summarized in the following definition.

Definition 3 (Bayesian estimator of Pr(E))
Let E be a subset of the sample set Ω. Let O be a sample of observed elements for which it
is known whether they belong or not to E. The Bayesian estimator of Pr(E), denoted P̂ r(E),
is the expected value of the posterior distribution of Pr(E) knowing the observations on the
membership to E of each element in O, and setting the prior probability of a random set to 1

2
,

and of the intersection of two random sets to 1

4
.

Setting the prior probabilities to 1

2
and 1

4
depending on whether E is a class or a conjunction

of classes corresponds to the uniform distribution of instances among the classes.
Let Êxt(E,O) be the set of observed instances of O that are recognized to be instances

of E. According to a basic theorem in probability theory (Theorem 1, page 160, [9]), if the
prior distribution of the random variable modeling Pr(E) is a Beta distribution of parameters
α and β, then its posterior distribution is also a Beta distribution the parameters of which are :
α + |Êxt(E,O)| and β + |O|.

The Beta distribution is a family of continuous probability distributions parameterized
by two parameters α and β which play an important role in Bayesian statistics. If its two
parameters are equal to 1, it corresponds to the uniform distribution for the associated random
variable. Its expected value is : α

α+β
.

In our setting, the set O is the union of the two (possibly disjoint) sets Oi and Oj of
instances observed in two distinct taxonomies Ti and Tj. This raises the issue of computing the

set Êxt(E,Oi ∪ Oj), specially when E is the conjonction of a class Ci of the taxonomy Ti and
a class Dj of the other taxonomy Tj . In this case :

Êxt(Ci ∩Dj,Oi ∪Oj) = Êxt(Ci,Oi ∪Oj) ∩ Êxt(Dj,Oi ∪ Oj)
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Since the two taxomomies have been created and populated independently by different users,
the only information that can be extracted from those two taxonomies are the extensions of
each class within each taxonomy : Ext(Ci, Ti) and Ext(Dj , Tj).

By construction, it is likely that their intersection contains very few instances or even no
instance at all. Therefore, we use automatic classifiers to compute Êxt(E,O). The machine
learning community has produced several types of classifiers that have been extensively (theo-
retically and experimentally) studied (see [29] for a survey) and have been made available
through open source platforms like Weka [36]. They are based on different approaches (e.g.,
Naive Bayes learning, decision trees, SVM) but they all need a training phase on two sets of
positive and negative examples. Let C be a classifier. Let E be a class of one of the two taxono-
mies that we denote by Ti, the other one being denoted Tj . For computing Êxt(E,O) we follow
the same approach as [12] :

- C is trained on the descriptions of the elements of the two sets Ext(E, Ti) andOi\Ext(E, Ti)
taken as the sets of positive and negative examples respectively,

- C is then applied to each instance of Oj to recognize whether it belongs to E or not.
As a result, the following theorem provides a simple way to compute the Bayesian estima-

tions P̂u(m) and P̂c(m) of the two probabilities Pu(m) and Pc(m) defined in Definition 2.

Theorem 2 (Estimation of mapping probabilities) Let m : Ci ⊑ Dj be a mapping bet-
ween two taxonomies Ti and Tj. Let O be the union of instances observed in Ti and Tj. Let

N = |O|, Ni = |Êxt(Ci,O)|, Nj = |Êxt(Dj,O)| and Nij = |Êxt(Ci ∩Dj ,O)|.

– P̂u(m) = 1 + 1+Nij

4+N
− 1+Ni

2+N

– P̂c(m) = 1+Nij

4+N
× 2+N

1+Ni

It is worth comparing the (Bayesian) ratios 1+Ni

2+N
and

1+Nij

4+N
appearing in the formulas for

computing P̂u(m) and P̂c(m) in Theorem 2 with the corresponding ratios Ni

N
and Nij

N
that would

have been obtained by following the standard (frequency-based) approach of statistics (as it is
the case for instance in [12]). The corresponding ratios converge to the same expected value
when there are many instances, but the Bayesian ratios are more robust to a small number
of instances. In contrast with the frequency-based approach, they are defined even in the case
where no instance is observed : their respective values (i.e.,1

2
and 1

4
) in this particular case

correspond to the probability of random sets and the joint probability of two random sets
respectively for a uniform distribution of instances in the sample set.

4 Generate and test of candidate probabilistic mappings

Given two taxonomies Ti and Tj and their associated instances, the goal is to determine
all mappings m of M(Ti, Tj) verifying a probabilistic-based criterion of validity that will be
denoted by P̂ (m) ≥ S.

P̂ (m) ≥ S is a parameter in the algorithm, which can be one of the three following validity
criteria :

– Validity criterion 1 : P̂u(m) ≥ Su

– Validity criterion 2 : P̂c(m) ≥ Sc

– Validity criterion 3 : P̂c(m) ≥ Sc and P̂u(m) ≥ Su

where Su and Sc are two thresholds in [0; 1].

Candidate mapping generation

The principle of the algorithm is to generate candidate mappings from the classes in the
two taxonomies partitioned into levels obtained by a reverse topological ordering [6].
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Topolological levels

For a DAG T , the topological levels obtained by reverse topological ordering are inductively
defined as follows :

- Level(0, T ) is the set of nodes with no outgoing arc.
- Level(i, T ) is the set of nodes which are connected by outgoing arcs only to nodes belonging

to levels strictly lower than i.
For example, the classes in the taxonomy T2 of Figure 1 are partitioned into 4 levels :
- Level(0, T2) = {Music}
- Level(1, T2) = {Opera, P iano}
- Level(2, T2) = {XXth Opera, XIXth Opera,

Recent Classical, Jazz}
- Level(3, T2) = {Ravel}

Generating candidate mappings by levels

Let Ti and Tj two taxonomies. Let nbi and nbj be the number of levels obtained by their
respective reverse topological ordering. Let k such that 0 ≤ k ≤ nbi + nbj . The set of generated
candidate mappings of level k, denoted by GenMapLevel(k, Ti, Tj), is obtained as follows :

GenMapLevel(k, Ti, Tj) =

⋃

n+m=k, 0≤n≤nbi, 0≤m≤nbj

{Ai ⊑ Aj |Ai ∈ Level(nbi − n, Ti) , Aj ∈ Level(m, Tj)}

∪
⋃

n+m=k, 0≤n≤nbj , 0≤m≤nbi

{Bj ⊑ Bi|Bj ∈ Level(nbj − n, Tj) , Bi ∈ Level(m, Ti)}

For the taxonomies of Figure 1, GenMapLevel(0, T1, T2) is constituted of the following map-
pings :
-Wagner1 ⊑Music2

-Schumann V ocal1 ⊑Music2

-Schumann Instrumental1 ⊑Music2

-Faure1 ⊑ Music2

-Stravinsky1 ⊑Music2

-Boulez1 ⊑ Music2

-Ravel2 ⊑ Classical Music1

We only give two of the nine mappings of GenMapLevel(1, T1, T2)) :
- Recent Classical2 ⊑ Classical Music1

- XXth Instrumenta2 ⊑Music2

The following proposition is a corollary of Proposition 1.

Proposition 3 Let Ti and Tj two taxonomies.
Let M(Ti, Tj) be the set of all possible mappings.

1. The mappings in GenMapLevel(0, Ti, Tj) are the most general mappings ofM(Ti, Tj) for
the entailment relation �.

2. Let m ∈ GenMapLevel(k, Ti, Tj), and let m′ be a mapping inM(Ti, Tj) which entails m,
then there exists k′ > k such that m′ ∈ GenMapLevel(k′, Ti, Tj).

3. The set of subsets GenMapLevel(k, Ti, Tj) ( 0 ≤ k ≤ nbi+nbj) is a partition ofM(Ti, Tj).
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Pruning the candidate mappings to test

Based on the monotonicity property of the probability function Pu (Theorem 1), every
mapping m′ that entails a mapping m such that Pu(m) < Su verifies Pu(m

′) < Su. Therefore,
in the algorithm, if the validity criterion involves P̂u, we prune the probability estimation of all
mappings that entail any m such that P̂u(m) < Su. We shall use the notation Entailing(m)
to denote the set of all mappings that entails m. Similarly, based on the property of weak
monotonicity of the probability function Pc (Theorem 1), if the validity criterion involves P̂c,
when a tested candidate mapping m is such that P̂c(m) < Sc we prune the probability estimation
of all mappings that entail m having the same left-hand side as m. We shall denote this set :
Implicantsc(m).

Based on Proposition 1, Implicants(m) and Implicantsc(m) can be generated from Ti and
Tj .

Proposition 3 shows that testing the validity of mappings following the levels induced by
reverse topological ordering of the two input taxonomies maximizes the number of pruning.

The resulting generate and test algorithm is described in Algorithm 1, in which :
– P̂ (m) ≥ S in line 5 denotes a generic validity criterion that can be instantiated either by

P̂u ≥ Su, or by P̂c ≥ Sc, or by P̂c ≥ Sc and P̂u ≥ Su.
– In the case where the validity criteria involves P̂c,

Implicants(m) in Line 8 must be replaced by
Implicantsc(m).

– In Line 2, nblevels is the sum nbi +nbj of the levels produced by a reverse topological order
applied to the two taxonomies Ti and Tj.

Algorithm 1 Generate and test all candidate mappings

Require: Ti, Tj, nblevels, threshold S
Ensure: return {m ∈ M(Ti, Tj)/P̂ (m) ≥ S}
1: MV al ← ∅, MNV al ← ∅
2: for k = 0 to nblevels do
3: for each m ∈ GenMapLevel(k, Ti, Tj) do
4: if m 6∈ MNV al then
5: if P̂ (m) ≥ S then
6: MV al ←MV al ∪ {m}
7: else
8: MNV al ←MNV al ∪ Implicants(m)
9: end if

10: end if
11: end for
12: end for
13: return MV al

5 Experiments

For the purpose of systematic testing of our approach in various conditions, we have evalua-
ted Algorithm 1 on synthetic data on which we can control important parameters and guarantee
structural or distributional properties.

Different analysis have been conducted. We have measured the impact of the probabilistic
models and of the thresholds involved in the validity criteria on the precision of the results and
on the pruning ratio. The pruning ratio is the ratio of mappings that are pruned by adding
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in line 8 Implicant(m) (or Implicantc(m)) to the set MNV al of unvalid mappings without
estimating their probabilities.

We have also measured the qualitative and quantitative impact of the choice of a classifier.
Automatic classification is at the core of the estimation of P̂u and P̂c with the computation of
Êxt(Ci∩Dj ,O) (see Theorem 2). For evaluating the quality of our results, we use the standard
criteria of precision and recall [35]. Recall is the ratio of returned results that are expected
w.r.t. all expected results. Precision is the ratio of returned results that are expected w.r.t. all
returned results.

Finally, we have tested the robustness of Algorithm 1 to noisy data.
We first describe the principles and the process of the data generator on which we have

conducted the different experiments. Then we describe the experimental protocol that we have
followed. Finally, we summarize the main experimental results that we have obtained.

5.1 Synthetic data generation

Synthetic data generation is divided into three steps : generation of taxonomies with fixed
sizes, generation of the expected mappings to discover, and population of each class by gene-
rating a fixed number of instances and associated description.

Generation of taxonomies

Given constraints on number of classes n1 and n2, we generate the structure of the two
respective taxonomies T1 and T2 as a forest of general trees (unconstrained in-degrees) by using
a Boltzmann sampler for unlabelled trees described in [14]. We use a reject method to get
random forests with n1 and n2 nodes. This method is simple and efficient while guaranteeing
an uniform distribution among the trees with the same number of nodes. Then, we label each
node by a distinct class name.

In our experiments, we set n1 = n2 so the two taxonomies have the same size, which is the
unique parameter of the taxonomies generation.

Mappings generation

We initialize the generation of mappings to be discovered MG with a set MS of seed
mappings, whose size is either fixed or randomly chosen between 1 and the common size of the
taxonomies.

Each mapping m ∈ MS is generated by a random choice for the two classes lhs(m) and
rhs(m) in T1 and T2, or in T2 and T1, depending on the mapping direction which is randomly
chosen too. We reject mappings which logically entail class inclusions that are not entailed
within each taxonomy (i.e., we forbid generated mappings to modify the knowledge of each
taxonomy).

The setMG of all mappings to discover will then be the set of mappings that can be logically
entailed by MS and the two taxonomies.

Following [15], the computation of precision and recall will be based onMG. Let R be the
result of Algorithm 1. The recall is the proportion of mappings of MG actually returned by
Algorithm 1 :

Recall =
MG ∩R

MG

The precision is the proportion of returned mappings that are actually inMG :

Precision =
MG ∩R

R
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Instances and description generation

For this step, we consider the two taxonomies and the mappings between them as a whole
DAG of classes. The acyclicity of that graph is guaranteed by the constraints imposed in the
production of the set MG of generated mappings described above.

We first generate a set of boolean attributes sufficient to associate a minimal intentional
description of each class respecting the semantic partial order � conveyed by the above DAG
structure. Then, we use this intentional knowledge to generate accordingly the description of
the instances with which we populate each class in the taxonomies.

Generation of the intentional description of classes :
We traverse the DAG of classes according to a reverse topological order [6] starting from
the most general classes that constitute the level 0, and we iterate the following process for
generating the intention of classes as sets of attributes :

- For each class C0
i of level 0, we generate a disjoint set of distinct attributes At0i and we

set the intention of C0
i , denoted Int(C0

i ), to be At0i .
- For each class Cj

i of level j (according to the reverse topogical order), we generate a set
Atji of novel attributes (disjoint from the set of existing attributes) with a size fixed to the out
degree of Cj

i in the DAG of classes, and we set Int(Cj
i ) to be Atji ∪

⋃
Int(Cj−1

ik
), where the

Cj−1

ik
are the successors of Cj

i in the DAG.

Population of classes :
Let {At1, . . . , Atm} be the set of attributes generated at the previous step. We populate each
class with nP instances, and we associate to them descriptions that respect the corresponding
intentional description, as follows : For each class C, each of its instances is described by a
boolean vector [a1, . . . , am] obtained by :

- setting to 1 each ai such that the corresponding attribute Ati is in the intention of the
class C,

- randomly setting the other values aj to 0 or 1.
This way, by construction, all the instances in the extension of a class have in common that

all the attributes in Int(C) are present in their description.
In Section 5.3 we will use an oracle classifier which classifies an instance i in the class C iff

all the attributes of the intention Int(C) of the class C are present in the description of i.
The results of data generation can be summarized into a table Tdata with m + nC columns

where m is the number of generated attributes and nC is the number of generated classes, and
each tuple [a1, . . . am, c1, . . . , cnc

] concatenates the description [a1, . . . am] of an instance in terms
of attributes, and its categorization [c1, . . . , cnc

] with respect to the classes : for each i ∈ [1..nC ]
ci is equal to 1 if i ∈ Ext(C) and to 0 if it is not the case.

Connection with Armstrong relations

We conclude this section on data generation by outlining a connection between the table
Tdata and the construction of Armstrong relations [19]. An Armstrong relation for a set of
implicational dependencies is a relation that satisfies each dependency implied by the set and
does not satisfy any dependency that is not implied by it. The tuples in the table Tdata can
be seen as a sample of the tuples in the Amstrong relation for the set {C ↔ At1, . . . , Atk} of
implicational dependencies existing between each class C and the attributes {At1, . . . , Atk}. It is
known ([19]) that the number of tuples in a minimal Armstrong relation maybe be exponential
in the number of columns. The interesting point in our data generation is that we control
the number of tuples in Tdata to be polynomial in function of the number of classes, and
we guarantee by construction that the expected implications between classes are verified. We
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cannot guarantee that Tdata does not satisfy some unexpected implications between classes as
an effect of the random choice of free attributes when generating the instance descriptions.
However, we have shown experimentally (on taxonomies of size 30 with a population of 200
instances per class) that the probabilities (inferred by the oracle classifier) of the unexpected
implications between classes are very low.

5.2 Experimental protocol

We first explain the goals of the successive experiments that we have performed.
The first goal is to analyze the impact on the precision of the thresholds Sc, Su involved

in the different validity criteria, with the purpose to fix appropriate thresholds for the next
experiments.

The second goal is to analyze the impact of the probabilities P̂c and P̂u on the pruning
ratio of the algorithm. The purpose is to determine among the three validity criteria defined in
Section 4 the one offering the best performances.

The third goal is to analyse and compare the impact both on precision/recall and on total
running time of three real classifiers (Naive Bayes, C4.5 and SVM) for estimating the proba-
bilities. The purpose is to determine the classifier offering the best tradeoff between quality of
results and running time. Note that we do not take the learning time of classifiers into account
because we consider that this task can be precomputed for each taxonomy.

Finally, the last goal is to analyse the robustness of the approach to noisy data.
For all the experiments presented in this section, each point is obtained by averaging the

results of 100 runs. For each run, a new synthetic dataset is generated with the appropriate
parameters. Note that in our experiments we generate taxonomies with few dozens of classes.
The number of random taxonomies of such sizes can be counted in billions. Thus, averaging
over 100 runs for a point does not prevent from local variations, leading to curves that are not
smooth.

Our algorithm is written in Java and compiled using Sun Java version 1.6. We run all the
tests on a quad-core Intel Q6700 Xeon at 2.66 GHz with 4 GB of memory. The OS is Ubuntu
Linux 8.10. For all the experiments measuring run times, only one instance of our program and
the OS are running on the machine, to avoid memory contention effects with other programs
that would affect the results.

5.3 Experimental results

5.3.1 Impact of thresholds on precision

We compare the influence of the thresholds Sc and Su associated to probabilities P̂c and P̂u

on the quality of the results returned by Algorithm 1. For doing so, we run the algorithm with
the validity criterion : P̂c ≥ Sc and P̂u ≥ Su.

In this experiment, the computation of probabilities is performed using the oracle classifier.
The parameters in the synthethic generator are defined such that |M(T1, T2)| = 320. We set the
number of seed mappings |MS| = 4. Note that by logical entailment the total number |MG| of
mappings to be discover may be much greater. For each couple of threshold (Sc, Su) ∈ [0.78 :
0.995]2, we compute the precision and the recall of the results of Algorithm 1. We observed
that the recall remains constant at 1.0 independently of values of Sc and Su. This is because
thanks to the oracle classifier, estimated probabilities for the mappings ofMG are very close to
1, and superior to all experimented thresholds, leading to a perfect recall. Thus, we only show
the results for precision in Figure 3.

The figure shows the contours of the different precision levels, from a precision of 0.93 to
a precision of 0.99. From the shape of these contours, it is clear that both P̂c and P̂u have an
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influence on precision. As the relation P̂u ≥ P̂c holds (Proposition 2), under the diagonal P̂u

has no influence on precision.
The probability P̂c is more discriminant than P̂u. The figure shows that P̂c influences the

precision for a large range of values of the threshold Sc, while P̂u only has an influence for very
high values of Su. We have observed the estimated probabilities for different mappings, and
found that there is an important gap in the values of P̂c between valid and invalid mappings.
This gap is much smaller for P̂u. P̂u giving higher probability values to invalid mappings, this
explains why it can only have an influence on precision at very high Su values.

Based on the curve of Figure 3, we fix the thresholds at (Sc = 0.83, Su = 0.96) for expe-
riments where the classifier used to estimate the probabilities is the oracle. This gives a good
precision of 0.95, and maps to a region where P̂u has an influence on the quality of results.

For the experiments in which a real classifier is used to estimate the probabilities, we fix
the thresholds at (Sc = 0.85, Su = 0.90) to be tolerant to classification errors.

5.3.2 Impact of probabilities on pruning ratio

We now study the impact of the probabilistic criteria defined in Section 4 for testing the
validity of a mapping on the pruning ratio performed by Algorithm 1.

Figure 4 shows the ratio of pruning made by the algorithm using the different validity
criteria, w.r.t. a naive approach not doing any pruning.

The validity computation using only P̂u is the one that prunes the least mappings, computing
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probabilities for about 40% of all mappings of M(Ti, Tj). Both P̂c and P̂c and P̂u does more

prunings and obtain a significant reduction of the search space. Combining P̂u and P̂c obtains
slightly better results than using P̂c alone, so for the remainder of this experiments section, we
use P̂c ≥ Sc and P̂u ≥ Su as validity criterion. It allows to compute the probabilities for only
20% of the mappings ofM(Ti, Tj), when the number of candidate mappings is high.

5.3.3 Impact of the classifiers

In this subsection, we replace the oracle classifier with a real classifier. We compare the
results given by three well-known classifiers : Naive Bayes [29], C4.5 [30] and SVM [20]. We use
the Weka implementation of these classifiers and have interfaced it with our code.

The comparisons of running times are shown in Figure 5 and in log scale in Figure 6.
A first conclusion is that the running times are polynomial in the number of mappings, and

are very similar, with Naive Bayes being slightly slower than C4.5 and SVM.
Comparisons for precision and recall are shown in respectively Figure 7 and Figure 8. Wha-

tever the classifier, precision is not impacted by the number of candidate mappings, i.e. the size
of search space. This is also the case for the recall, except when the classifier is Naive Bayes.
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Naive Bayes has both the worst recall and the worst precision, the choice is thus between
C4.5 and SVM. They seem to have similar results. However, the learning time of SVM (not
shown here) is much longer than the learning time of C4.5. We thus choose C4.5 for further
experiments, and analyse the impact of the number of instances per class on the classification
performance of Algorithm 1 with C4.5.

We vary the number of instances per class nP between 10 and 450. The results for compu-
tation time, precision and recall are shown in Figures 9, 10 and 11.

In this experiment, the number of classes and of mapping is constant, hence the number
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of classifications to perform is linear in the number of instances. The C4.5 algorithm takes
linear time in the number of instances. As expected, this is also the case for Algorithm 1, as
shown by Figure 9. Increasing the number of instances per class only increases slightly precision,
whereas it strongly improves recall. The most important point to note is that excellent values
of precision and recall are obtained with as few as 50 instances per class, as expected, with a
use of a bayesian approach of statistics.

5.3.4 Robustness to noisy data

In order to test the robustness to noise of our algorithm, we define a new parameter θ
corresponding to the quantity of noise to inject in the synthetic data. Each dataset produced
by the synthetic data generator goes through a step of noise application, where each boolean
corresponding to the value of an attribute for an instance can be reversed with a probability θ.
The new dataset is then processed as usual by Algorithm 1.

The variations of precision and recall for values of θ ∈ [0; 0.3] are show in Figure 12.
The figure shows that recall gracefully degrades when noise increases. At 10% noise, the

recall is nearly unaffected, at a value of 0.95. Values of noise superior to 15% have a more
significant impact and lead to poor recall.

Precision, however, exhibits a different behavior. It first increases with noise, before abruptly
decreasing for more than 24% of noise.

In order to understand this phenomenon, we have investigated in details the classifier results
and the values of probabilities given to mappings. We found that for 0% noise, there are invalid
mappings that are incorrectly given too high probabilities, and that appear as valid. This
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explains the non-perfect 0.88 precision value. The probability values for these mappings are close
to the threshold. Increasing noise makes the classifiers more selective, and tends to decrease the
values of all probabilities. So the probabilities of these invalid mappings go below the threshold
for a moderate amount of noise, whereas the probabilities of valid mappings remain above the
threshold. Thus the precision increases.

6 Related work and conclusion

As outlined in the introduction, semantic mappings are the glue for data integration sys-
tems. A wide range of methods of schema/ontology matching have been developed both in
the database and the semantic web communities [17]. One of the principles widely exploited
is terminological comparison of the labels of classes with string-based similarities or lexicon-
based similarities (like WordNet) (e.g., TaxoMap [22], H-MATCH [5]) . Another widely used
principle is structure comparison between labeled graphs representing ontologies (e.g., OLA
[18]). In fact, most of the existing matchers combine these two approaches in different ways
(e.g., COMA++ [2] and COMA [10], Cupid [27], H-MATCH [5]). Other approaches have been
investigated using machine learning techniques using a corpus of schema matches (e.g., [26]),
or a corpus of labelled instances (e.g., LSD [11], SemInt [25], GLUE [12], FCA-merge [33]).

It is standard practice for ontology and schema matchers to associate numbers with the
candidate mappings they propose. However, those numbers do not have a probabilistic meaning
and are just used for ranking.

In contrast, our approach promotes a probabilistic semantics for mappings and provides a
method to compute mapping probabilities based on the descriptions of instances categorized
in each ontology. It is important to note that even if we use similar classification techniques as
[12], we use them for computing true probabilities and not similarity coefficients. In addition,
we follow a Bayesian approach for estimating joint probabilities which is more robust to a small
number of instances.

The most distinguishing feature of our approach is that it bridges the gap between logic and
probabilities by providing probabilistic models that are consistent with the logical semantics
underlying ontology languages. Therefore, our approach generalizes existing works based on
algebraic or logical representation of mappings as a basis for reasoning (e.g., S-Match [21], Clio
[28]).

The thorough experiments that we have conducted on controlled synthetic data have shown
the feasibility and the scalability of our approach. We have experimentally demonstrated that
the time complexity of our algorithm is polynomial in the size of the taxonomies to align and
linear in the number of instances. We have also shown that our algorithm has a good robustness
w.r.t. noisy data.

The mappings that are returned by our algorithm can be exploited for mapping validation
by probabilistic reasoning in the line of what is proposed in [4].

More generally, our approach is complementary of the recent work that has been flourishing
on probabilistic databases [3, 7]. In particular, it fits into the general framework set in [13] for
handling uncertainty in data integration, for which it provides an effective way for computing
mapping probabilities.

As a future work, we plan to integrate our method in the SomeWhere peer-to-peer infra-
structure [1] in order to discover automatically mappings between a peer joining the network
and its acquainted peers. We will conduct an experiment on the deployment of SomeWhere
enriched with automatic mapping discovery for peer-to-peer data sharing of musical files, in
which each user will manually categorize his music files according to his own taxonomy. Our
method will exploit the metadata that can be extracted from several formats of audio files.
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For example, MP3 files embed descriptive tags complying to the ID3 [24] standard for meta-
data. These tags specify features such as the title, author, genre of the song encoded. Those
attribute-value metadata can be extracted automatically from MP3 files and can be conver-
ted by adequate preprocessing into a set of boolean attributes for a direct application of our
mapping discovery method.
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